The Silicon tracker developments at KEK

19 Dec. 2007
Toru Tsuboyama (KEK)
For Belle vertex detector collaboration
and
SOIPIXEL collaboration at Torino, Italy
Outline

• Topics from KEK
• Upgrade plan of the silicon vertex detector.
• SOI pixel sensor activity
• Synergy with the ILC detector R&D.
News from KEK

• KEK director general decided to upgrade KEKB factory to a 2×10^{35} /cm2/s machine.
 – The current KEKB will be shutdown at end of 2008 and the commissioning of the new KEKB will happen in 2012.

• A 3 GeV electron test beam line, using KEKB electron beam, has started October 2007.

• J-PARC: Commissioning of the 3-GeV radiofrequency-synchrotron was successfully done in November.

• **R&D of ILC accelerator and detector will be continued independent of KEKB upgrade and JPARC.**
RCS 3GeV加速成功
2007年10月31日 14時03分23秒

The silicon tracker development at KEK, Toru TSushoyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy.
A new electron beam line

• Extract the bremsstrahlung γ from KEKB electron ring (8 GeV) and convert into e^+e^- pairs and transferred to the experiment area using five bending and four Q magnets.

• Started operation in October 2007.

• Beam intensity is not enough. (Low rate test can be done.)

• Coordinator: T.Kawasaki kawasaki@hep.sc.niigata-u.ac.jp

- Beta-SVD upgrade
- JPARC scintillation fiber
- ILC calorimeter
- Wire chamber R&D
Upgrade plan of Belle silicon vertex detector

- 1.5 T solenoid
- Central tracking chamber
- CsI calorimeter
- 3.5 GeV e\(^{+}\) beam
- 8 GeV e\(^{-}\) beam
- 3.5 GeV e\(^{+}\) beam
- Aerogel Cerenkov
- Time of flight
- K\(_{L}\) and \(\mu\) counter
- Silicon Vertex Detector

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Silicon Vertex Detector

• SVD reconstructs two vertices of B decay.
 – B flight length ~ 200 µm.
• The CP violation parameters are extracted from the distribution of distance between two vertices.

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
KEKB upgrade plan

- The CP violation in framework of the Standard model has been established.
- To explore the physics beyond the standard model we need more luminosity.
- Many new phenomena would appear around 50 ab^{-1}.
- There are several scenarios to achieve this luminosity goal.
Upgrade of the vertex detector

• Configuration
 – Six layers: for reconstruction of low-momentum tracks.
 – Better vertex resolution.
 – Material inside acceptance must be minimized.

• Sensor options
 – DSSD
 – Pixel

• Readout electronics
 – 10KHz trigger rate
 – Hit occupancy should be kept <10%
Consideration of the inner most layer (I)

- Two layers DSSD:
 - 20% improvement at high momentum thanks to the smaller detector radius.
 - Robust hit finding under background.
- Monolithic Pixel:
 - Similar performance and robust tracking
 - R&D in progress

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Sensor configuration

- **Belle acceptance:** $17^\circ < \theta < 150^\circ$
- **Outer radius:** 150 mm
- **Inner radius:** 13 mm
 - Beam pipe ($r = 10$ mm)
 - For better vertex resolution.
- **Total sensitive area:** $\sim 1 \text{ m}^2$
- **Inclined ladders in Layer 5 and 6**
- **Material budget**
- **Ladder lengths:** (75 cm / bar, 60 cm)
- **Option in Layer 1 sensor**

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area (mm²)</td>
<td>71.0x7.9</td>
<td></td>
</tr>
<tr>
<td>Strip length (mm)</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Strip pitch (µm)</td>
<td>25.5 (p)</td>
<td>51 (n)</td>
</tr>
<tr>
<td>Readout pitch (µm)</td>
<td>51 (p)</td>
<td>51 (n)</td>
</tr>
<tr>
<td>Num. of readout ch.</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Bias resistor (MΩ)</td>
<td>>10</td>
<td></td>
</tr>
</tbody>
</table>

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Evaluation of striplet sensor

- Leakage current
 0.09 µA=16nA/cm² @ 80V / 25°C

- Laser scan with VA1TA
 - Reasonable charge separation on p-side and n-side

- Beam test with APV25
 - Full depletion voltage ~65 V
 - S/N ~25(p side)/27(n side) for MIP
High-density kapton flex circuits

• Stripllet readout: 1024 signals in 10 mm width.
• A 2-layer 38 µm pitch design is chosen.
• A sub company of CASIO produces the kapton flex circuit in the semiconductor-level clean rooms.
 – High yield.
 – Cost is low in mass production.

• Issues
 – Size is limited to 8x14 cm.
 – Tin plating only. Gold plating outside of CASIO reduces the production yield.
 – We are not very welcomed. Our order interferes their mass production.
Readout with APV25 ASIC

- APV25 is chosen
 - Originally developed for CMS Silicon tracker
- Operated with 40MHz clock
 - 192 stage pipeline (~4 µsec trigger latency)
 - Up to 32 readout queues
 - 128 ch analog multiplexing (3 µsec@40 MHz)
 - Dead time: negligible at expected trigger rate of 10 kHz

Noise = \((246 + 36/pF) \) @50nsec

The silicon tracker development at KEK, Toru Tsuboyama (KEK), 19 Dec., 2007 SILC meeting at Torino, Italy
Hit timing reconstruction

- B-Factory --> 2 nsec bunch crossing
 - APV25 deconvolution filter can not be used.
- Hit time reconstruction
 - Proposed by Vienna group
 - Read out 3, 6 ... slices in the pipeline for one trigger.
 - Extract the hit timing information from waveform.

Proven in beam tests: Resolution ~ 2 nsec.
Reconstruction done in the FPGA chips in FADC board.

(HEPHY Vienna)
APV25 Readout

- APV25 is readout with simplest hardwares.
 - No optical fiber, No support chips.
 - Readout electronics were developed from scratch.
- Hybrid (Princeton):
 - Mounted with four APV25 chips only.
 - Signals are transferred to the repeater system with 2m copper twisted cable.
- Repeater (Vienna):
 - Double sided readout.
 - Floating LVPS. LVPS are floated to the bias voltage in P-side and N-side order to minimize the effect of pin holes in the AC coupling.
- FADC (Vienna):
 - 9UVME size. Each board readouts 6 hybrids (24 channels)
 - FADC + Data sparsification + hit-time reconstruction on FPGA
- Interface to DAQ (Cracow)
 - Data from FADC board is transferred to the event builder.
Test bench of APV25 (APVDAQ)

• Developed by HEPHY (Vienna) for adaptation test of APV25 in Belle.
 – Operated with various APV25 modes
 – External and internal trigger.
 – Evaluations: test-pulse, radiation source, IR pulse laser and test beam line.

• Hardware:
 – VME board (Control / FADC)
 – AC coupled Repeater
 – Four-chip Hybrid

• Software
 – GUI version (NI “Lab Windows”)
 – C / Linux version (developed with Princeton group)

Beam tests
2005.04 --- Evaluation of striplet sensor readout with APV25
2005.12 --- Evaluation of DSSD for the SVD upgrade (APV25+VA1 readout mixed)
2007.11 --- Evaluation of new readout system for Belle SVD upgrade.
April 2005

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Dec. 2005

- Almost the last beam test at the KEK proton synchrotron.
- APV25 and VA1 ladders
- Test of the new sensor for Belle upgrade.
Nov. 2007

• The first experiment at the KEK new beam line.

• Demonstration of the new DSSD sensor, hybrid, repeater and FADC. Six hybrids were readout successfully.

• CM subtraction by FPGA is tried.
Mount readout chips on DSSDs

- In order to avoid the long (up to 56 cm) kapton flex, Vienna group proposed to mount the readout chips on DSSD sensors.
 - Capacitance due to long kapton flex can be avoided.
 - Detail resolution study including material budget and S/N is necessary.
 - Various cooling method will be tried. (Air, water channel …)
Progress of the SOIPIX project

• OKI 150 nm process (200 nm since this year)
• Normal CMOS process.
• 2005/2006 Experimental line (150 nm)
• 2007 Mass production line (200 nm)

• Team leader: Y. Arai yasuo.arai@kek.jp
OKI SOI structure

- Add a few steps to the normal CMOS production.
 - Remove the buried oxide (BOX) where implant is done.
 - Implant the P/N type ions.
 - Fill the hole with SiO2 and annealing.
 - Make a via for the contact to metal 1.
 - Fill the via with plug metal.

- Normal CMOS process will be continued.
Progress of the SOIPIX project

- 2005 First submission (150 nm)
- 2006 Second submission (150 nm)
- 2007 Third submission in preparation (200 nm)
Readout with COBI system

- COBI: General purpose FPGA board including FADC and USB interface developed by Hawii Univ. HEP group.
- 128x128 pixel chip is evaluated with COBI.
- FADC data is stored in the FIFO in the FPGA and transferred to PC via USB interface.
- Response to light is measured. DAQ rate: 1Frame = 40 msec.
- **Beam test will be done in next February.**

![Diagram of COBI system interface]

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Response to room light

The silicon tracker development at KEK, Toru TSuboyama (KEK), 19 Dec. 2007 SILC meeting at Torino, Italy
Synergy with ICL

19 Dec 2007
Toru Tsuboyama (KEK)
Function of the vertex detector in B factories

(I)

• Basic design of Belle/Babar silicon vertex detectors is valid in Super B factories.
 – Even at 100 times larger luminosity, B factories are forever low-energy machines.

• Measure the decay vertices of the two B mesons, especially in the Z direction.
 – At Y(4S) energy, the events are either a pure BB system or non-B events.
 – If a B decay mode is identified, the other tracks and energy clusters belong to the other B.
 – Thanks to the long lifetime and slow B^0-B^0 oscillation, the resolution of the silicon vertex detector is adequate.
Function of the vertex detector in B factories (II)

- Help the tracking by the central drift chamber
 - Extend the lever arm of high-pt tracks for $B \to K\pi$, $\pi\pi$ etc.
 - The detection of slow π in $B \to D^*X \to D\pi sX$.

- K_s reconstruction in $B \to K(*) \gamma$.
 - Only 2 charged tracks appears separated from B decay vertex.
 - Larger radii of outer 2 layers increase the K_s acceptance.
Sensor production

• Double-sided sensor is essential to minimize the material.
• 300 µm is acceptable. The thinner the better.
• Mass production starts in 2009.
• HPK stopped the double-sided production line.
• We have started to find other suppliers.
Alignments

- Ambiguities of alignment between sensor and sensor, and, between silicon vertex detector and central drift chamber are \(O(10 \, \mu m)\), in case of present Belle.
 - We guess the field non-uniformity due to final-focus magnets prevents better alignment with magnet.

- Above 5 ab\(^{-1}\) integrated luminosity (x7 of the present Belle data), statistics error of B decay vertex measurement reaches this level.
 - Physics output will be limited by sensor alignment ambiguity.

- Need absolute detector alignment methods.
Material thickness

- Beam energy of a Super B factory is essentially the same as the existing machines.
- Material in silicon vertex detector should be kept or decreased for a better performance of the whole system.
- IP chamber should hold beam current (a few Ampere).
 - A vacuum chamber thickness with liquid cooling is necessary.
 - Extremely thin silicon sensors will not improve the vertex resolution.
- Readout hybrid should be placed outside the detector acceptance.
- If ASIC is put on the sensor, cooling material will be the next issue. (Air cooling and high-temperature should be tried.)
- R&D of monolithic pixel sensor is active in Belle /
Structure and Infrastructures

• KEKB adopted High-current options.
 – Backgrounds from beam increase accordingly.
 • Short shaping-time
 • Pipelined readout is necessary.
• Outer radius will be larger.
• Readout channel will be 4-10 times than that of the present system.
• Cable, cooling, position of the readout ASICs requires more space for the vertex detector.
• BKG simulation group is designing the Belle structure with more background shield around the silicon tracker region.
• Solution: Low-material and stable support and cooling system, low power ASIC will allow realistic detector design.
ASIC design

• Train structure is completely different
• ILC --- 1 msec train / 200 msec period.
• KEKB---- DC beam (2 nsec crossing) .
 – Electronics should be always active.
 – Cooling : If ASIC should be mounted on DSSD sensors, low mass cooling system should be developed.
Summary of this talk

• KEK decided to upgrade the KEK B factory. Luminosity goal depends on budget.

• Conceptual design exists for the SVD upgrade.
 – No detailed designs yet.

• KEK SOIPIXEL collaboration in progress.
 – 2007 OKI MPW will be submitted in 1-2 weeks.